Nuevas tecnologías aplicadas a Real Word Data y Real World Evidence

imagen autor
António Valente. Head. Cegedim Health Data Spain.

Nuevas tecnologías aplicadas a Real Word Data y Real World Evidence

09/5/2022

En un artículo anterior, exploramos el concepto, de las principales fuentes de datos y los principales usuarios de Real Word Data (RWD). Como fuentes de datos, enumeramos los Registros Médicos Electrónicos (EMR), los Registros Sanitarios Electrónicos (EHR), las bases de datos de claims o de facturación, los dispositivos de monitorización de la salud y las aplicaciones de salud, los registros de pacientes, la investigación de mercado primaria (con la participación de los médicos, los pacientes y la población), los medios sociales y otros. Como principales usuarios de RWD, nuestra lista incluía a varias partes interesadas de la industria de las ciencias de la salud, como los departamentos de I+D, farmacovigilancia, departamentos médicos, departamentos de Market Access, departamentos de marketing, ventas… pero también asociaciones de la industria, reguladores, pagadores, organizaciones de atención sanitaria, médicos y asociaciones de médicos, CROs y empresas de consultoría, universidades e investigadores, canales de distribución (mayoristas y farmacias), compañías de seguros, pacientes y asociaciones de pacientes.

Los RWD procedentes de todas las fuentes de datos mencionadas utilizan tecnología que permite anonimizar, validar y mapear los datos (por ejemplo, a OMOP), dejándolos listos para el análisis de datos. En este último ámbito -en el que se genera la evidencia del mundo real (RWE)-, podemos explorar el uso de la inteligencia artificial (IA), que podemos definir como el uso de la inteligencia de las máquinas para detectar oportunidades y resolver problemas. Dentro del amplio concepto de IA, encontramos el machine learning (ML), definido como el estudio de algoritmos informáticos que pueden mejorar automáticamente a través de la experiencia y el uso de datos1. Luego, dentro del concepto de ML, encontramos el concepto de deep learning (DL), que utiliza redes neuronales artificiales (RNA) de múltiples layers, o en otras palabras, algoritmos avanzados que imitan la estructura del cerebro humano en la detección de patrones.

Como ejemplo, imaginemos que estamos viendo a un niño pequeño hacer un dibujo a mano. Primero, empieza con una “M”. En su segundo garabato, añade una “O” debajo de la “M”. En una tercera iteración, añade una “O” más grande y alargada debajo de la primera “O”. Veamos un posible resultado.

Como observadores, nuestro cerebro puede empezar a asociar esto como “tal vez” un animal. Entonces añade una “S” en la parte inferior derecha de la imagen, y podemos empezar a tener más confianza en que el dibujo puede representar un gato. En una quinta iteración, decide añadir algunos vectores cortos y delgados en la “O” más pequeña, y podemos pensar “¡Ahá, tiene bigotes, definitivamente es un gato!”.

Con este ejemplo tan sencillo, podemos ver que el cerebro humano trabaja analizando patrones, capa por capa, evolucionando su percepción. Comienza con patrones básicos y se vuelve más y más complejo con capas adicionales de abstracción y detección de patrones. En un ejemplo de la “vida real”, los niveles más altos de detección de patrones pueden estar asociados al humor, la ironía, etc. Las RNA funcionan de manera muy similar, ayudando a los investigadores a detectar patrones ocultos en los datos que pueden conducir a mejores decisiones.

Estos algoritmos de ML pueden aplicarse a la RWD para ayudar a detectar posibles patrones ocultos en los datos. Una aplicación interesante es el reconocimiento de imágenes, donde el ML ayuda a detectar cánceres en las radiografías, de nuevo, basándose en el análisis de patrones. Los especialistas pueden entonces utilizar estos conocimientos para un mejor diagnóstico y gestión del tratamiento.

El ML también puede contribuir a un análisis superior de los datos procedentes de múltiples fuentes, incluidas las diversas señales de los dispositivos médicos, detectando patrones no lineales y “furtivos” que pueden no ser tan obvios de identificar con los métodos estadísticos tradicionales. Las técnicas de procesamiento del lenguaje natural (NLP) pueden utilizarse para analizar el texto libre originado en los EMRs y EHRs, añadiendo valor a los registros puramente cuantitativos de los RWD.

Los algoritmos de ML también pueden ayudar a las ciencias de la salud a analizar los pathways de los pacientes en el mundo real entre la atención primaria y la secundaria, identificar subgrupos de pacientes con determinados riesgos mayores (ej: mayor riesgo de Covid-19 entre los pacientes obesos, diabéticos e hipertensos), ayudar a identificar los tratamientos óptimos basándose en miles o millones de registros sanitarios longitudinales de pacientes (con su historial de diagnósticos, comorbilidades, comportamiento, uso de recursos como consultas, medicamentos prescritos, bajas médicas, visitas a urgencias, hospitalizaciones), y mejorar el conocimiento y las condiciones en las que los pacientes pueden, por ejemplo, estar menos comprometidos con su salud.

Una reflexión final: para poder aprovechar estas tecnologías, la RWD tiene que estar preparada para la IA: tiene que estar totalmente anonimizada, debidamente estructurada mediante un modelo de datos común, robusta y longitudinalmente completa, que permita el descubrimiento de insights que contribuyan al descubrimiento de conocimiento científico y a la mejora de la salud pública.

(1) Mitchell, Tom (1997). Machine Learning. New York: McGraw Hill

Categorias:
PMFarma no se hace responsable ni se identifica con las opiniones, informaciones, ideas o conceptos vertidos en los artículos de opinión publicados en todos sus medios tanto revistas impresas, digitales y web.

Articulos relacionados:

Logo
Marta Cervantes. Scientific Business and Consultancy. Punta Alta.
Inteligencia artificial invisible para reforzar el criterio científico y humanizar los sistemas de salud

En los últimos años, la inteligencia artificial (IA) ha pasado de ser una promesa futurista a convertirse en un actor silencioso, pero omnipresente, en salud. Lo que antes parecía una herramienta de laboratorio o un concepto reservado a departamentos de innovación, hoy toca casi todos los ámbitos de la actividad profesional sanitaria, desde la investigación clínica hasta la comunicación científica de resultados. La presión...

Hoy Feb. 2026
Logo
Belén Alonso, Ana Moreno, Susana Vara y Alberto Corral. Apices.
La IA impulsa una nueva era en los ensayos clínicos: el futuro ya ha llegado

La investigación clínica nunca ha sido ajena al avance tecnológico. Primero llegaron los cuadernos de recogida de datos electrónicos (eCRD), luego la revisión remota de datos y las visitas de monitorización remotas, después el archivo del ensayo clínico... La historia de la investigación clínica es una sucesión de transformaciones silenciosas y simultáneas, con el fin de adaptarla...

Hoy Feb. 2026
Logo
Manuel Achaques. Responsable de Preventa para Iberia, Italia y Latinoamérica. Hornetsecurity.
Las amenazas que redefinirán la seguridad en Farma en 2026

El sector farmacéutico afronta el nuevo año con muchos desafíos en el ámbito de la ciberseguridad. Aunque es un sector que ya dispone de una alta digitalización, lo cierto es que la presión regulatoria, la dependencia de una cadena de suministro global y un creciente interés por la Inteligencia Artificial dificultan un escenario ya de por sí complejo, marcado por la gestión de grandes volúmenes de datos clínicos confidenciales. La...

Ene. 2026